Mostrando entradas con la etiqueta eteres. Mostrar todas las entradas
Mostrando entradas con la etiqueta eteres. Mostrar todas las entradas

Éteres: clasificación, nomenclatura, propiedades físicas y químicas.

Los éteres se consideran derivados del agua, donde los dos hidrógenos han sido sustituidos por radicales alquilo.
Grupo funcional: –O– (OXA)
Fórmula general: R–O–R’ donde R y R’ son radicales alquilo o arilo los cuales pueden ser iguales o diferentes.

 Clasificación.
  • Éteres simples o simétricos: Son los que tienen ambos restos alcohólicos iguales.
  • Éteres mixtos o asimétricos: Son los que tienen los dos restos de diferentes tamaños por ser de alcoholes distintos. 
    ·      Éteres aromáticos: cuando tienen radicales aromáticos.
    ·       Éteres aromático-alifático: cuando un radical es aromático y el otro alifático.
Nomenclatura.
  
La nomenclatura de los éteres consiste en nombrar alfabéticamente los dos grupos alquilo que parten del oxígeno, terminando el nombre en éter.  Veamos algunos ejemplos:

También se pueden nombrar los éteres como grupos alcoxi.
 Los éteres cíclicos se forman sustituyendo  -CH2- del ciclo por  -O-.  Este cambio se indica con el prefijo oxa- .


Propiedades físicas.
  •  Estructuralmente los éteres pueden considerarse derivados del agua o alcoholes, en los que se han reemplazado uno o dos hidrógenos, respectivamente, por restos carbonados.
La estructura angular de los éteres se explica bien asumiendo una hibridación sp3 en el oxígeno, que posee dos pares de electrones no compartidos, no puede establecer enlaces de hidrógeno consigo mismo y sus puntos de ebullición y fusión son muchos más bajos que los alcoholes referibles.
Un caso muy especial lo constituyen los epóxidos, que son éteres cíclicos de tres miembros. El anillo contiene mucha tensión, aunque algo menos que en el ciclo propano.


  • Debido a que el ángulo del  enlace C-o-C no es de 180º, los  momentos  dipolares de los  dos  enlaces C-O no se anulan; en consecuencia,  los  éteres  presentan  un pequeño  momento  dipolar neto  (por ejemplo 1.18 D  para el  dietil  éter).Sus puntos de ebullición son menores que los alcoholes que lo formaron pero son similares a los alcanos de pesos moleculares semejantes. A diferencia de los alcoholes no establecen uniones puente de hidrógeno y esto hace que sus puntos de ebullición sean significativamente menores.
  • Son algo solubles en agua. Son incoloros y al igual que los ésteres tienen olores agradables. El más pequeño es gaseoso, los siguientes líquidos y los más pesados sólidos.
  • Son buenos disolventes de grasas y aceites y yodo.
  • Al evaporarse el éter etílico produce un frío intenso.
  • Son compuestos de gran estabilidad, muy usados como disolventes inertes por su baja reactividad. Los éteres corona complejan los cationes eliminándolos del medio, permitiendo la disolución de sales en disolventes orgánicos.
  • Son menos densos que el agua (flotan sobre ella).


Propiedades químicas.
·         Los éteres tienen muy poca reactividad química, debido a la dificultad que presenta la ruptura del enlace C—O. Por ello, se utilizan mucho como disolventes inertes en reacciones orgánicas.
·         En contacto con el aire sufren una lenta oxidación en la que se forman peróxidos muy inestables y poco volátiles. Estos constituyen un peligro cuando se destila un éter, pues se concentran en el residuo y pueden dar lugar a explosiones. Esto se evita guardando el éter con hilo de sodio o añadiendo una pequeña cantidad de un reductor (SO4Fe, LiAIH4) antes de la destilación.
·         Los éteres no son reactivos a excepción de los epóxidos. Las reacciones de los epóxidos pasan por la apertura del ciclo. Dicha apertura puede ser catalizada por ácido o apertura mediante nucleófilo.
No tienen hidrógenos activos como en los casos de los alcoholes o ácidos. Por este motivo son inertes ante metales como el sodio o potasio o litio. Necesitan del calor para descomponerse y ahí si poder reaccionar con algunos metales.

  • Oxidación:Ante agentes oxidantes fuertes como el Dicromato de potasio, los éteres se oxidan dando aldehídos.
  • Reacción con los haluros de hidrógeno:Los haluros de hidrógeno (cuyas reactividades están en el orden HI>HBr>HCl) son capaces de romper los enlaces del oxígeno del éter y formar dos moléculas independientes. Los éteres alifáticos se rompen en dos moléculas del  haluro de alquilo correspondiente, mientras que en los éteres alquilo arilo se forman el alquil haluro correspondiente y fenol. Las reacciones que siguen con el HI sirven para ilustrar.
R-O-R'  +  HI  -------------------->  R-I  +  R'-I   +  H2O

Ar-O-R  +  HI  -------------->  Ar-OH   +  R-I
  • Reacción con el oxígeno del aire:Cuando los éteres están en contacto con el aire, espontánea y lentamente se produce su oxidación que genera un peróxido derivado muy inestable.
La presencia de estos peróxidos son un elevado peligro potencial cuando el éter se somete a un proceso de destilación. En este caso, los peróxidos en el líquido no destilado aun, se van concentrando y pueden producir una violenta explosión.
Una regla de seguridad básica para hacer destilados con éteres es asegurarse de que en él no hayan peróxidos, y en caso de haberlos, eliminarlos antes de la destilación.

Éteres: usos, riesgos y beneficios, nombre y estructura.

Usos de los éteres.
·         Medio para extractar para concentrar ácido acético y otros ácidos.
·         Medio de arrastre para la deshidratación de alcoholes etílicos e isopropílicos.
·         Disolvente de sustancias orgánicas (aceites, grasas, resinas, nitrocelulosa, perfumes y alcaloides).
·         Combustible inicial de motores Diésel.
·         Fuertes pegamentos.
·         Desinflamatorio abdominal para después del parto, exclusivamente uso externo. 
·         Este éter se utilizó como anestésico durante mucho tiempo. Produce la inconsciencia mediante la depresión del sistema nervioso central, pero tiene efectos irritantes del sistema respiratorio y provoca náuseas y vómitos luego de la anestesia.
·         Los éteres de forma compleja son muy abundantes en la vida vegetal formando parte de las resinas de las plantas, colorantes de flores y otros.
·         ·         Es un componente de muchas pinturas y barnices, lacas.
·         Los fabricantes de productos químicos lo utilizan para sintetizar y analizar los productos químicos.
·         El éter isopropílico es una alternativa más barata al etilo y al petróleo en extracciones de grasas. También es conveniente y ahorra tiempo.
·         Los químicos suelen utilizar éter isopropílico como disolvente en cromatografía (un proceso en el cual una mezcla química por un líquido o gas se separa en componentes como resultado de la distribución diferencial de los solutos mientras fluyen alrededor o a través de una fase estacionaria líquida o sólida).
·         El alcohol isopropílico también encuentra sus usos en la metalurgia. Puede recuperar sustancias deseables y quitar las indeseables. Por ejemplo, el éter isopropílico es un agente de buena extracción para la recuperación del oro de una solución de ácido nítrico.
·         El éter isopropílico es un aditivo útil porque agregar éter isopropílico a la gasolina aumenta el nivel de octanaje.

Riesgos y beneficios para la salud.
No se sabe nada definitivo acerca de los efectos de los éteres sobre la salud de seres humanos. Prácticamente toda la información disponible proviene de estudios en animales. Los estudios en animales indican que las mezclas comerciales de decaBDE son generalmente mucho menos tóxicas que los productos que contienen PBDEs con bajo contenido de bromo. Basado en esta información, se espera que el decaBDE tenga relativamente pocos efectos sobre la salud de seres humanos. Las ratas y ratones que comieron durante períodos breves alimentos con cantidades moderadas de PBDEs con bajo contenido de bromo sufrieron principalmente efectos sobre la glándula tiroides. Las ratas y ratones que comieron cantidades más bajas durante semanas o meses sufrieron alteraciones del hígado y de la tiroides. Se ha especulado que los efectos de los PBDEs sobre la tiroides ocurren específicamente en tan sólo algunos animales de laboratorio, sugiriendo que es menos probable que ocurran en seres humanos. Alteraciones muy sutiles del comportamiento se han observado en animales expuestos a los PBDEs a temprana edad. La causa de estos efectos sobre el comportamiento puede estar relacionada a las alteraciones sobre la tiroides, debido a que el desarrollo del sistema nervioso depende de las hormonas tiroideas. Los PBDEs no han causado otros tipos de defectos de nacimiento en animales; sin embargo, se necesitan más estudios para determinar si los PBDEs pueden afectar la reproducción. Hallazgos preliminares en estudios de corta duración en animales sugieren que algunos PBDEs pueden producir alteraciones del sistema inmunitario. Los animales expuestos a PBDEs a través de contacto con la piel sufrieron irritación de la piel solamente si la piel tenía rasguños.
¿Qué posibilidades hay de que los PBDEs produzcan cáncer?
No sabemos si los PBDEs pueden producir cáncer en seres humanos, aunque ratas y ratones que ingirieron de por vida cantidades sumamente altas de decaBDE desarrollaron tumores del hígado. Basado en la evidencia de cáncer en animales, la EPA ha clasificado al decaBDE como posiblemente carcinogénico en seres humanos. La carcinogenicidad de los PBDEs con bajo contenido de bromo no ha sido evaluada. Ni el Departamento de Salud y Servicios Humanos (DHHS) ni la Agencia Internacional para la Investigación del Cáncer (IARC, por sus siglas en inglés) han clasificado a los PBDEs en cuanto a carcinogenicidad.
¿Cómo pueden los PBDEs afectar a los niños?
Los niños generalmente están expuestos a los PBDEs de la misma manera que los adultos, principalmente al comer alimentos contaminados. Debido a que los PBDEs se disuelven fácilmente en la grasa, pueden acumularse en la leche materna y puede ser transferidos a bebés que lactan.

La exposición a los PBDEs en el útero y a través de la leche materna ha producido alteraciones de la tiroides y del comportamiento en animales recién nacidos, pero no ha producido defectos de nacimiento. No se sabe si los PBDEs pueden producir defectos de nacimiento en seres humanos.

No sabemos si los efectos que se han observado en animales expuestos a PBDEs también podrían ocurrir en seres humanos expuestos de manera similar. Las cantidades de PBDEs que afectan la salud de animales son mucho más altas que las que se encuentran comúnmente en el ambiente. La exposición prolongada a los PBDEs es potencialmente más perjudicial para la salud que la exposición breve a niveles bajos de PBDEs debido a la tendencia de estas sustancias a acumularse en el cuerpo con los años. Además, los productos comerciales de pentaBDE y octaBDE tienen una probabilidad mucho más alta de causar alteraciones de la salud que decaBDE. 
Nombre y estructura química de algunos compuestos.
·         Éter Eílico: Tiene un uso anestésico.

·         Óxido de etileno: El éter cíclico más pequeño.

·         Éter Dimetil: Propulsor del aerosol.

·         Éter Dietil: Un solvente de bajo punto de ebullición común (punto de ebullición. 34.6°C).

·         Dimetoxietano: (DME) Un solvente que hierve alto (punto de ebullición. 85°C.

·         Dioxano: Un éter cíclico y un solvente que hierve alto (punto de ebullición. 101.1°C).

·         Tetrahidrofurano: (THF) Un éter cíclico, uno de los éteres simples más polares que se utiliza como solvente.

·         Anisol: (metoxibenzeno) un componente importante del aceite esencial de la semilla de anís.

·         Éteres corona: Polieteres cíclicos que se utilizan como catalizadores.

·         Glicol de polietileno: Un polieter utilizado en los cosméticos.

Bibliografía.